Intermountain Power Agency is an organization of 23 Utah municipalities that is the steward of the Intermountain Power Project. This energy resource located in central Utah includes a 4,616-acre site with extensive rail and electricity transmission links to the western United States. Currently the host of an 1,800-megawatt coal fueled generating station, the site is diversifying as a hub for a variety of energy resources.
Operating continuously since 1986, the Intermountain Power Project is an economic cornerstone of central Utah. Efficiently providing electricity to approximately 1.5 million homes throughout the western United States, the Project consistently ranks as one of the most efficient generating stations of its size in the nation. It is also one of the cleanest coal fueled power plants in America and today is taking a leadership role in controlling greenhouse gas emissions and encouraging development of renewable energy resources.

The Project
The Project consists of:

- a two-unit coal-fired steam-electric generating plant with a net rating of 1,800 MW Generating Station and a switchyard located near Lynndyl, in Millard County, Utah;

- a +500-kV direct current transmission line approximately 490 miles in length from the IPP site to Adelanto, California;

- two 50-mile 345-kV alternating current transmission lines from the site to the Mona Switchyard in the vicinity of Mona, Utah and a 144-mile 230-kV alternating current transmission line from the Switchyard to the Gonder Switchyard near Ely, Nevada;

- a microwave communications system;

- a railcar service center located in Springville, in Utah County, Utah; and

- certain water rights and coal supplies.

All of the facilities of the Project have been in full commercial operation since May 1, 1987 and have operated at higher than anticipated capacity and availability levels.

America Needs Electricity
The U.S. Energy Information Administration projects that electricity demand in America will grow by 41% by 2030. Intermittent energy resources like wind and solar are useful for meeting peak energy demands, but they are not always available. Power plants like the Intermountain Power Project will be vital to providing a constant and reliable supply of electricity that people can depend upon.

United States
Electricity Generation

- Coal 49%
- Natural Gas 22%
- Nuclear 19%
- Hydroelectric 5%
- Other Renewables 3%
- Other 2%
At a Glance

Participants:
- California: Six municipal utilities
- Utah: 23 municipal utilities
- Six rural electric cooperatives
- One investor-owned utility

Organization:
- Owner: Intermountain Power Agency
- Governance: IPA Board of Directors
 IPP Coordinating Committee

Dimensions and Controls:
- Site: 4,616 acres
- Boiler structure height: 301 feet
- Chimney height: 710 feet
- Air Quality Control System:
 - Fabric Filters: 99.75% minimum particulate removal
 - Scrubber: 90% minimum sulfur dioxide removal

Coal and Water Use:
- Coal requirement: 5.8 millions tons annually
- Water requirement: 19,000 acre feet annually

Economic Impact:
- Work force: 485 employees
- Payments in lieu of Utah taxes: Over half a billion dollars since inception
- Scholarships: Provided at six Utah colleges and universities; and offered to six high schools in the area surrounding the generating station.

Power is purchased by six California municipal utilities, 23 Utah municipal utilities, six rural electric cooperatives, and one investor-owned utility.

The Power Purchasers’ payment obligations are several and not joint and are not subject to reduction or offset whether the Project is operating or operable or if its output is suspended, interrupted or terminated in whole or in part.
Leading the Way for Coal-Fueled Power Generation

The Intermountain Power Project is a model for coal-fueled power plants everywhere.

Data published annually by the North American Electric Reliability Council shows that the Intermountain Power Project remains one of the most efficient generating stations of its size in the nation. The Project’s equivalent availability factor is 5 percent higher than the industry average and net capacity factor is more than 10 percent higher. These measurements show that the Project is both ready for service and actually in service at much higher rates than most similar plants.

Operating Performance

<table>
<thead>
<tr>
<th>Total Generating Capacity:</th>
<th>Last 5 Years Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,900 gross/1,800 net megawatts</td>
<td></td>
</tr>
</tbody>
</table>

- **Gross Generation (gigawatt-hours):** 15,118
- **Equivalent Availability:** 93.2%
- **Net Capacity Factor:** 90.7%
- **Coal Usage (thousands of tons):** 5,864
- **Net Facility Heat Rate (BTUs per kilowatt-hour):** 9,524

Offering Financial Strength and Stability

Despite one of the most difficult financial markets in over a generation, the Intermountain Power Agency remains on sound fiscal footing. Strong and stable bond ratings have allowed the Agency to continue managing its debt portfolio and providing resources to maintain the Project in top condition.

Responsible financial stewardship of the multi-billion dollar Project will enable it to continue producing reliable, low-cost electricity for more decades to come.

Funding

Initial capital for the Project was $5.5 billion, which included $4.4 billion for the Project facilities and $1.1 billion needed for the Southern Transmission System (STS). IPA began its financing activity for the Project facilities in 1981 and completed the effort three years later in 1984. During this period the Southern California Public Power Authority secured the capital necessary to construct the STS. Average cost of capital reached nearly 12 percent during this period of volatile interest rates. Through dedicated management of IPA’s debt portfolio outstanding, Project debt remaining today is approximately $2.8 billion and the average cost of capital is about 4 percent. IPA’s current favorable debt ratings, financial statements and other Project information can be reviewed on its web site www.ipautah.com.
Improving the Environmental Profile of Electricity in America’s West

The Project also has been one of America’s cleanest coal-fueled generating stations. The Project’s sulfur dioxide and mercury emissions have consistently been among the lowest for coal fueled power plants across the nation.

Today, the Project has expanded its efforts to improve environmental performance to include reducing greenhouse gas emissions. The Project is assisting the U.S. Department of Energy in researching technological solutions for reducing or capturing and storing carbon dioxide emissions. IPA is also a host utility and provides funding for a post-combustion Carbon Dioxide Capture and Retrofit Study being conducted by the Electric Power Research Institute.

Our commitment to the communities that depend on the electricity we generate includes:

- Make every feasible effort to employ the best environmental protection equipment and operations strategies.

- Explore new technologies and operations strategies for reducing greenhouse gas emissions.

- Continue to produce reliable power at a cost significantly below the nation’s average cost.
Diversifying Energy Capabilities
For the Utah Project Site

The Intermountain Power Project’s central Utah location is also ideally suited to facilitate development of a variety of other energy resources. The area has high potential for wind, solar and geothermal energy development. The Project is also located close to major natural gas pipelines.

IPA has already supported development of 203 megawatts of electricity from 97 wind turbines installed in southwest Utah by providing access to transmission resources. Additional wind and geothermal energy projects will utilize the IPA transmission system in the near future.

IPA has also launched a wide ranging study of energy resource options for future development of its central Utah site. That study will assess options for decades more of Project operations utilizing both traditional fuels and renewable energy resources.

U.S. Electricity from Wind Energy

![Graph showing U.S. electricity from wind energy from 1999 to 2009 (est.)](image)

Courtesy: American Wind Energy Association